

ROMAN KOSHKIN

🏡 <https://roman-koshkin.unit.oist.jp> 🌐 [/RomanKoshkin](https://www.linkedin.com/in/romankoshkininterpreter) 📩 roman.koshkin@gmail.com 💬 [/in/romankoshkininterpreter](https://www.linkedin.com/in/romankoshkininterpreter)

SKILLS

Programming languages:	Python (highest proficiency), C++, Matlab, R, HTML, JavaScript
ML Frameworks:	Pytorch (highest proficiency), HuggingFace, Lightning, scikit-learn, JAX
Frontend development:	React, Next.js
Virtualization, Infra, HPC:	Docker, Singularity, AWS, slurm
DB, LLMOps, MLOps, etc.:	Neo4j, Redis, MongoDB, LangSmith, LangChain, LangGraph, wandb, Apache Spark

EDUCATION

OIST <i>PhD (Machine Learning and Computational Neuroscience)</i>	Okinawa, Japan
Modeling memory in spiking networks and pattern detection	<i>Expected graduation: 11/2024</i>
HSE University <i>Master (Cognitive Science)</i>	Moscow, Russia
with distinction, GPA: 8.9/10	
VUMO University <i>Bachelor (Applied Linguistics)</i>	Moscow, Russia
with honors, GPA: 4.9/5	

WORK EXPERIENCE

Amazon	Tokyo, Japan
Research Scientist Intern	<i>09/2024 - 11/2024</i>
• Building multi-agent systems for open-ended automated market research and analysis.	
NLP Group @ NAIST	Nara, Japan
Special Research Intern	<i>07/2023 - 10/2023</i>
• Developed speech-to-text SiMT models leveraging open-source causal LLMs	
• Set up LLMOps/MLOps, parallel experiments to identify best design and HP choices	
Reinforcement Learning Research Team @ Araya	Tokyo, Japan
Research Intern	<i>07/2023 - 10/2023</i>
• Conducted research towards using EEG for robot control with a brain-machine interface	
• Compiled a sensor-aligned motor imagery EEG datasets, trained self-supervised EEG feature extractors	
• Achieved competitive performance in downstream tasks (incl. MI imagery classification)	
• Reimplemented and open-sourced an M/EEG speech-decoding model	
Center for Bioelectric Interfaces @ HSE University	Moscow, Russia
Junior Research Fellow	<i>09/2017 - 07/2019</i>
• Conceptualized research agenda, coordinated a team of 3 researchers for 2 years	
• Implemented EEG data collection, pre-processing pipelines, built ML models and other software	
• Provided progress reports to the funding company, co-authored RF Patent 2747571	

SELECTED PUBLICATIONS

Koshkin, R., Sudoh, K., Nakamura, S. (2024). LLMs Are Zero-Shot Context-Aware Simultaneous Translators. *EMNLP 2024*. [\[LINK\]](#)

Koshkin, R., Sudoh, K., Nakamura, S. (2024). TransLLaMa: LLM-based Simultaneous Translation System. *EMNLP 2024*. [\[LINK\]](#)

Koshkin, R., Fukai, T. (2024). convSeq: Fast and Scalable Method for Detecting Patterns in Spike Data. In *ICML 2024*. [\[LINK\]](#)

Koshkin, R., Fukai, T. (2023). Unsupervised Detection of Cell Assemblies with Graph Neural Networks. In *ICLR 2023*. [\[LINK\]](#)

Koshkin, R., Fukai, T. (2024). Astrocyte Regulation of Synaptic Plasticity Balances Robustness and Flexibility of Cell Assemblies. In *bioRxiv*. [\[LINK\]](#)

AWARDS, GRANTS AND FELLOWSHIPS

OIST Teaching Fellowship, 2023, ¥1.2M

KAKENHI Grant-in-Aid, 2023, ¥1.8M [\[LINK\]](#)

Japan Society for the Promotion of Science Fellowship, 2023 [\[LINK\]](#)

Google PhD Fellowship, 2021, \$10K [\[LINK\]](#)

PATENTS

RF Patent 2747571. EEG method for estimating listeners' reaction to audio content. [LINK]

PROJECTS

toLLMatch [LINK]	02/2024 - 05/2024
• Multilingual LLM-based speech-to-text simultaneous machine translation with no costly pre-training or fine-tuning	
TransLLaMa [LINK]	07/2023 - 10/2023
• LLM-based speech-to-text simultaneous machine translation	
convSeq [LINK]	01/2023 - 03/2023
• Fast and scalable convolution-based method for unsupervised detection of patterns in neural recordings	
SoNNNet [LINK]	09/2020 - 06/2024
• High-performance C++ library with a configurable user-friendly Python API for building spiking neural networks	
graphSeq [LINK]	09/2022 - 12/2022
• Graph neural network-based method for embedding and clustering of neural spiking patterns	
M/EEG-based zero-shot speech decoding [LINK]	09/2022 - 12/2022
• Re-implementation of an algorithm that decodes speech from human brain recordings (M/EEG) 0-shot	
Teaching Object Handling to a Robot [LINK]	04/2020 - 09/2020
• Trained a robot to perform reach-and-grasp tasks by combining learned motor primitives	
Backpropagation-free learning for classification tasks [LINK]	1/2020 - 4/2020
• Built a spike-timing dependent plasticity-based spiking neural network for image classification	
Neurobarometer [LINK]	10/2017 - 07/2019
• Software & algorithm for EEG-based neuromarketing and consumer behavior research	
Finding Weak Effects in Evoked Response Data [LINK]	09/2016 - 04/2017
• Contributed to designing a novel projection-based method for identifying weak effects in noisy ERP data	

POSTER PRESENTATIONS

Koshkin, R., Fukai, T. (2022). Astrocytes facilitate self-organization and remodeling of cell assemblies under STP-coupled STDP. *SfN Conference*, Nov 14-16, San Diego. [LINK]

Koshkin, R., Fukai, T (2021). Leveraging Self-organized Structure for Memory Encoding in Binary Networks. *RIKEN-OIST Symposium*, Oct. 6-7, 2021, Japan [LINK]

Koshkin, R., Shtyrov, Y. & Ossadtchi, A. (2017). Testing One Aspect of the Efforts Model of Simultaneous Interpreting: An ERP Study. In *Proceedings of the Workshop "Neurobiology Of Speech And Language"*, Oct. 27-29, 2017, SPb, Russia [LINK]

Koshkin, R., Ossadtchi, A. & Shtyrov, Y. (2016). N1 ERP As an Index of Depth of Processing In Simultaneous Interpreting. In *Proceedings of Communication, Computation, and Cognitive Processes*, Sept. 28-29, 2016, Moscow, Russia [LINK]

Koshkin, R., Ossadtchi, A. & Shtyrov, Y. (2017). Working Memory Load In Simultaneous Language Interpretation: An ERP Study. *IEEE International Symposium <Video and Audio Signal Processing>*, Jun. 26-30, 2017, SPb, Russia [LINK]

Kuznetsova A., **Koshkin R.**, Ossadtchi A. (2017). Localizing Hidden Regularities With Known Temporal Structure in the EEG Evoked Response Data. *IEEE International Symposium <Video and Audio Signal Processing>*, Jun. 26-30, 2017, SPb, Russia [LINK]

CONFERENCE PROCEEDINGS, BOOK CHAPTERS, AND OTHER PUBLICATIONS

Koshkin, R., Ossadtchi, A. (2017). Working Memory Load in Simultaneous Language Interpretation: An ERP Study. In *Proc. of the 4th Conference "Cognitive Science in Moscow: New Research"*. July 15, 2017, Moscow, Russia. p. 434 [LINK]

Garcia, A., **Koshkin, R.**, Paiva, T. (2023). EEG In Cognitive Translation and Interpreting Studies. (In review)

Koshkin, R., Shtyrov, Y. , Myachykov, A. & Ossadtchi, A. (2018). Testing the Efforts Model of Simultaneous Interpreting. *PLoS ONE* 13(10): e0206129. [LINK]

Koshkin, R., & Ossadtchi, A. (2017). Commentary: Functional Connectivity in the Left Dorsal Stream Facilitates Simultaneous Language Translation: An EEG Study. *Front. in Hum. Neurosci.*, 11(2), 273. [LINK]

Koshkin, R., Ossadtchi, A. & Shtyrov, Y. (2017). Attention, Working Memory And Listening In Simultaneous Interpreting. *Russian J. of Cognitive Sci.*, 4(4). [LINK]

Koshkin R. (2016). Comparative Analysis of English-Russian and Russian-English Simultaneous Interpreting. *Bulletin of Moscow University, Series 22: Theory of Translation*. Vol. 2, 28-43 [LINK]

SERVICE

Reviewer for Language, Cognition and Neuroscience

Reviewer for Tiny Papers Track @ ICLR 2023

Science Mentor Introduction to Deep Learning with Python, Okinawa, Japan