Roman Koshkin

1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan

https://roman-koshkin.unit.oist.jp roman.koshkin@oist.jp

in @romankoshkininterpreter

Phttps://github.com/RomanKoshkin/

* Final-year PhD student in machine learning and computational neuroscience. * Experienced in simultaneous machine translation and language modeling ***** Interested in natural language processing and understanding.

EDUCATIO	N
09/2019	Okinawa Institute of Science and Technology, Neural Coding and Brain Computing Unit, Japan
- present	PhD (Machine Learning and Computational Neuroscience) <i>Expected graduation</i> : 06/2025
06/2017	National Research University HSE, Moscow, Russia Master of Science, Psychology (with distinction, GPA: 8.9/10)
06/2002	VUMO University, Moscow, Russia
	Specialist, Linguistics (with honors, GPA: 4.9/5)
WORK EXP	ERIENCE
07/2023 10/2023	 Special Research Intern, NLP Group, AHC Lab, Nara Institute of Science and Technology, Japan Developed speech-to-text and speech-to-speech SiMT models leveraging open-source causal LLMs. Set up LLMOps/MLOps, parallel experiments to identify best design and HP choices.
07/2022 11/2022	 Research Intern, Araya, Reinforcement Learning Research Team, Tokyo, Japan Conduct research towards using EEG for robot control with a brain-machine interface Compiled a sensor-aligned motor imagery EEG dataset on which I Trained a self-supervised EEG feature extractor with a contrastive loss and Achieved competitive performance in downstream tasks (incl. MI imagery classification). Reimplemented and <u>open-sourced</u> an M/EEG <u>speech-decoding model</u>.
09/2017 07/2019	Junior Research Fellow, <i>Center for Bioelectric Interfaces,</i> Institute of Cognitive Neuroscience, National Research University HSE, Moscow, Russia
	 Coordinated a research team of 3 people for 2 years Conceptualized and conducted neuromarketing and consumer behavior research experiments Designed and implemented EEG data collection and pre-processing pipelines Wrote and maintained data acquisition software (Python front- & backend) Designed and trained DL models for estimating respondents' opinion of advertised products Taught EEG data pre-processing techniques, Python and MATLAB to junior lab members Provided oral status updates and written progress reports to the funding company (Neurotrend) Co-authored one patent (RF Patent 2747571)
PROJECTS	
07/2023	TransLLaMa
10/2023	NLP Group, NAIST
01 /0000	LLM-based speech-to-text and speech-to-speech simultaneous machine translation.
01/2023	convSeq
03/2023	Neural Coding and Brain Computing Unit, OIST Fast and scalable convolution-based method for unsupervised detection of patterns in neural recordings.
09/2020	SoNNet
- present	Neural Coding and Brain Computing Unit, OIST High-performance C++ library with a configurable user-friendly Python API for building recurrent spiking neural networks (SNNs).
09/2022	graphSeq
12/2022	Neural Coding and Brain Computing Unit, OIST Graph neural network-based method for simultaneous embedding and clustering of neural spiking patterns.
09/2022	M/EEG-based zero-shot speech decoding
12/2022	Araya Lab, Tokyo
04/2020 09/2020	Re-implementation of an algorithm that decodes speech from human brain recordings (M/EEG) 0-shot. Tutoring Object Manipulation Skills in a Human-Robot Interaction Paradigm <i>OIST Cognitive Neurorobotics Unit, OIST</i> <u>Trained</u> a robot to perform reach-and-grasp tasks by combining learned motor primitives.
1/2020	Backpropagation-free learning for classification tasks
4/2020	OIST Neural Coding and Brain Computing Unit
	Built a spike-timing dependent plasticity-based spiking neural network for image classification.
$\frac{09}{2019}$	Extended Ca ²⁺ Buffer and Dynamics Model of the Rat Hippocampal Presynapse
12/2019	OIST Computational Neuroscience Unit Implemented a reaction-diffusion model of Ca2+ dynamics in the rat hippocampal presynapse.
10/2017	Neurobarometer, Center for Bioelectric Interfaces, Higher School of Economics
$\frac{10}{2017}$ 07/2019	Software & algorithm for EEG-based neuromarketing and consumer behavior research.
09/2016	Finding Weak Effects with Known Temporal Structure in Evoked Response Data, NRU HSE

04/2017Contributed to designing a novel projection-based method for identifying weak effects in noisy ERP data09/2015Attention and Working Memory in Simultaneous Interpreting, Higher School of Economics09/2016Tested the Efforts Model of simultaneous interpreting using the ERP technique

SKILLS

JAILLJ	
Frameworks/tools:	Pytorch (highest proficiency), HuggingFace, Lightning, scikit-learn, JAX, Apache Spark
Infrastructure:	AWS, slurm
Programming languages:	Python (highest proficiency), C++, Matlab, R, HTML, JavaScript
Frontend development:	React, Next.js
DevOps, CI/CD:	GitHub Actions, Docker, Singularity
Databases:	Neo4j, Redis, MongoDB
LLMOps:	Lang ['] Smith, LangChain, LangGraph, wandb

PATENTS

RF Patent 2747571. Electroencephalographic method and system of objective estimation of listeners' reaction to audio content based on a range of voluntary affective categories. <u>https://bit.ly/EEGpatent2</u>

AWARDS, GRANTS, FELLOWSHIPS

2023	KAKENHI Grant-in-Aid (¥ 1.8M) (https://cir.nii.ac.jp/crid/1040577431243576704)	
2023	Japan Society for the Promotion of Science Fellowship (http://bit.ly/3PjzL7y)	
2021	<u>Google PhD Fellowship</u> (\$ 10K) (https://research.google/outreach/phd-fellowship/recipients/?category=2021)	

PREPRINTS & PEER-REVIEWED PUBLICATIONS

Koshkin, R., Sudoh, K., Nakamura, S. (2024). TransLLaMa: LLM-based Simultaneous Translation System. *arXiv*. https://arxiv.org/abs/2402.04636

Koshkin, R., Fukai, T. (2024). convSeq: Fast and Scalable Method for Detecting Patterns in Spike Data. *arXiv*. https://arxiv.org/abs/2402.01130

Koshkin, R., Fukai, T. (2023). Unsupervised Detection of Cell Assemblies with Graph Neural Networks. *In ICLR* 2023 *Tiny Papers Track*. https://openreview.net/pdf?id=Tbzv_BbjjO8

Koshkin, R., Shtyrov, Y., Myachykov, A, & Ossadtchi, A. (2018). Testing the Efforts Model of Simultaneous Interpreting. *PLoS ONE* 13(10): e0206129. https://doi.org/10.1371/journal.pone.0206129

Koshkin, R., & Ossadtchi, A. (2017). Commentary: Functional Connectivity in the Left Dorsal Stream Facilitates Simultaneous Language Translation: An EEG Study. *Frontiers in Human Neuroscience*, *11*(2), 273. http://doi.org/10.3389/fnhum.2017.00064

Koshkin, R., Ossadtchi, A. & Shtyrov, Y. (2017). Attention, Working Memory And Listening In Simultaneous Interpreting. *Russian Journal of Cognitive Science*, 4(4). http://cogjournal.org/eng/4/4/index.html

Koshkin R. (2016). Comparative Analysis of Quantitative Dynamics of English-Russian and Russian-English Simultaneous Interpreting. *Bulletin of Moscow University, Series 22: Theory of Translation. Vol. 2,* 28-43 https://elibrary.ru/item.asp?id=27125259

POSTER PRESENTATIONS AND TALKS

Koshkin, R, Fukai, T. (2022). Astrocytes facilitate self-organization and remodeling of cell assemblies under STP-coupled STDP. SfN Conference, Nov 14-16, San Diego. Abstract: <u>https://bit.ly/SfN_nov_2022</u> Koshkin, R., Fukai, T (2021). Leveraging Self-organized Structure for Memory Encoding in Binary Networks.

RIKEN-OIST Symposium, Oct. 6-7, 2021, Japan Poster: https://bit.ly/3lgsqGO Koshkin, R., Shtyrov, Y. & Ossadtchi, A. (2017). Testing One Aspect of the Efforts Model of Simultaneous

Interpreting: An ERP Study. In *Proceedings of the Workshop "Neurobiology Of Speech And Language"*, Oct. 27-29, 2017, SPb, Russia Abstract: http://bit.ly/2y52Hu3 Poster: http://bit.ly/2ljEytV

Koshkin, R., Ossadtchi, A. & Shtyrov, Y.(2016). N1 ERP As an Index of Depth of Processing In Simultaneous Interpreting. In *Proceedings of Communication, Computation, and Cognitive Processes*, Sept. 28-29, 2016, Moscow, Russia Abstract: http://bit.ly/2lhyWjP

Koshkin, R., Ossadtchi, A. & Shtyrov, Y.(2017). Working Memory Load In Simultaneous Language Interpretation: An ERP Study. *IEEE International Symposium «Video and Audio Signal Processing in the Context of Neurotechnologies»*, Jun. 26-30, 2017, SPb, Russia Abstract: http://bit.ly/2ANhSVD

Kuznetsova A., Koshkin R., Ossadtchi A. (2017). Localizing Hidden Regularities With Known Temporal Structure in the EEG Evoked Response Data. *IEEE International Symposium «Video and Audio Signal Processing in the Context of Neurotechnologies»*, Jun. 26-30, 2017, SPb, Russia Abstract: http://bit.ly/2ANhSVD

CONFERENCE PROCEEDINGS AND BOOK CHAPTERS

Koshkin, R., Ossadtchi, A. (2017). Working Memory Load in Simultaneous Language Interpretation: An ERP Study. In *Proc. of the 4th Conference "Cognitive Science in Moscow: New Research"*. July 15, 2017, Moscow, Russia. p. 434 http://virtualcoglab.ru/MoscowCogSci2017Proceedings.pdf

Garcia, A., **Koshkin, R.**, Paiva, T. (2023). EEG. In *Cognitive Translation and Interpreting Studies*. *Amsterdam: John Benjamins*. (In review)

TEACHING, MENTORSHIP AND OTHER EXPERIENCE

11/2021 Science Mentor, Okinawa, Japan

Taught Introduction to Deep Learning with Python to high-school students.